

ELSEVIER Thermochimica Acta 296 (1997) 129-134

therm0chimica acta

Studies on the non-isothermal kinetics of thermal decomposition of the complex of europium *p*-methylbenzoate with 2,2'-dipyridine

Ping Mu^{a,*}, RuiFen Wang^b, Liang Zhao^c

aExperimental Center, Hebei Teachers' University, Shijiazhuang, 050016, People's Republic of China bDepartment of Chemistry, Hebei Normal College, Shijiazhuang, 050091, People's Republic of China CDepartment of Computer Science, Hebei Teachers' University, Shijiazhuang, 050016, People's Republic of China

Received 10 February 1996; received in revised form 7 March 1996; accepted 10 December t996

Abstract

Thermal decomposition of the complex of europium p-methylbenzoate with 2,2'-dipyridine and its kinetics were studied under the non-isothermal condition by TG and DTG techniques. The non-isothermal kinetic data were analyzed by means of the Achar method and the Coats-Redfern method. The possible reaction mechanisms were suggested by comparing the kinetic parameters. The kinetic equation for the first stage can be expressed as:

$$
d\alpha/dt = A \exp(-E/RT) \frac{3}{2}(1+\alpha)^{2/3} \left[(1+\alpha)^{1/3} - 1 \right]^{-1},
$$

while for the third stage, $d\alpha/dt = A \exp(-E/RT)(1-\alpha)$. Mathematic expressions were derived from the kinetic compensation effects. \odot 1997 Elsevier Science B.V.

Keywords: Eu(llI) complex; Thermal decomposition; Non-isothermal kinetics

The special structure and the interesting lumines- *2.1. Sample* cent character of the Eu(III) complex made it very important in applied researches as well as in theore- The complex of europium p-methylbenzoate with tical studies. The studies of the studies

Based on the preparation and the determination of [1]. the crystal structure and luminescence spectra of the complex [1], we have studied the non-isothermal *2.2. Apparatus* kinetic data by means of the Achar method and the Coats-Redfern method and have suggested the pos-
sible reaction mechanism.

1. Introduction 2. Experimental

 $(p-MBA: p-methylbenzoate and dipy: 2,2'-dipyridine)$ were carried out using a Perkin-Elmer TGA7 thermo- *Corresponding author, gravimetric analyzer under a nitrogen atmosphere, at a

^{0040-6031/97/\$17.00 © 1997} Elsevier Science B.V. All rights reserved *PII* S0040-603 1 (97)000 | 4-2

flow rate of 40 ml min⁻¹. The heating rate used was TG-DTG curves show degradation in the first stage at 10° C min⁻¹ from ambient to 840° C and sample sizes in the $168-243^{\circ}$ C temperature range and a dipy were 3 ± 0.1 mg. was considered to be expelled with a mass loss of

shown in Fig. 1. The thermoanalytical data for the with the mass loss of 19.10%, which is nearly equal complex are given in Table 1. to the theoretical loss of 18.94% which is the value

to give the europium oxide as an end product. The stage decomposition includes two steps in which percentage of mass loss and probable compositions of the first step is in the range 243-457°C and the expelled groups are also listed in Table 1. The second step is in the range $457-487^{\circ}$ C with results of thermal analysis indicate that the complex two intermediates of $Eu_2(CH_3C_6H_4COO)_4O_2$ and undergoes a three-stage decomposition process. The $[Eu_2(CH_3C_6H_4COO)_4]^2^+$, obtained separately. This

in the $168-243$ °C temperature range and a dipy 21.92% (theoretical loss is 21.89%). The degradation can also be demonstrated by the bond dis-3. Results and discussion tances of the structure of the complex (Fig. 2). Eu-N distance is longer than any other bond *3.1. Thermal decomposition* distance; theoretically speaking, this bond is less stable and easy broken down. The second-stage The TG and DTG curves of Eu(p-MBA)₃ dipy are degradation temperature is in the range $243-487^{\circ}$ C The Eu(III) complex decomposed via intermediates of removal of one ion of p -MBA. Actually, this

Fig. 1. Thermogravimetric curves (DTG and TG) for $Eu(p-MBA)$ ₃ dipy.

487–680 34.54 34.51 $-C_{32}H_{28}O_5$ Eu₂O₃

Fig. 2. Structure and partial data of bond distances of $Eu(p-MBA)$ ₃ dipy [1].

degradation process can also be explained by structural data. From Fig. 2,

Table 1

we can see that the distance of Eu-O(4) is the longest among all Eu-O bonds. Also, $O(3)$ and $O(4)$ are connected with $C(21)$, the bond distance $O(3)$ - $C(21) = 1.301 > O(4) - C(21) = 1.24$. Thus, Eu-O(4) and $O(3)$ -C(21) bonds were considered to be broken down following the Eu–N bond, as indicated by the Eu-O(5) 2.446 broken line in Fig. 2. The intermediate, $Eu_2CH_3C_6H_4COO_4O_2$, was produced with a mass loss of 16.2% (theoretical loss 16.7%). But there is no clear plateau in the TG curve, it continues to lose weight. TG curve indicates that with the rise of 1 Eu'-O and Eu'-N bond is the same as Eu-O and Eu-N bond. temperature, $Eu_2CH_3C_6H_4COO_4O_2$ continues to

degrade – remove O_2 and turn into In base of above inference, the thermal decomposi-
[Eu₂(CH₃C₆H₄COO)₄]²⁺. This degradation was fol-
tion process of Eu(III) complex may be expressed by lowed by the third stage of decomposition in the 487- the following scheme: 680°C temperature range, in which the other two ions of p-MBA were removed with a mass loss of 34.54% (theoretical loss is 34.51%). Up to now, the Eu(III) complex were completely degraded into $Eu₂O₃$, with a total loss of 75.56% (theoretical loss is $75.34\%)$. \rightarrow Eu_2 (CH₃C₆H₄COO)₄] \rightarrow Eu_2O_3

Table 2 Basic data for $Eu(p-MBA)$ ₃ dipy determined by TG and DTG

tion process of Eu(III) complex may be expressed by

$$
\begin{aligned} \n\text{Eu}_2(\text{CH}_3\text{C}_6\text{H}_4\text{COO})_6(\text{C}_{10}\text{H}_8\text{N}_2)_2\\ \n&\rightarrow \text{Eu}_2(\text{CH}_3\text{C}_6\text{H}_4\text{COO})_6\\ \n&\rightarrow \text{Eu}_2(\text{CH}_3\text{C}_6\text{H}_4\text{COO})_4\text{O}_2\\ \n&\rightarrow [\text{Eu}_2(\text{CH}_3\text{C}_6\text{H}_4\text{COO})_4]^{2+} \rightarrow \text{Eu}_2\text{O}_3 \n\end{aligned}
$$

Stage 1				Stage 3			
No.	α	T per K	$d\alpha/dT$	No.	α	T per K	$d\alpha/dT$
	0.013	443.14	0.099		0.0487	770.65	1.124
2	0.0153	448.14	0.124	\overline{c}	0.1074	783.12	1.685
3	0.0194	453.14	0.187	3	0.1877	795.64	2.231
4	0.0262	458.14	0.287	4	0.2792	808.15	2.512
5	0.0374	463.14	0.449	5	0.3157	813.12	2.549
6	0.0554	468.14	0.699	6	0.3521	818.14	2.512
7	0.0839	473.14	1.061	7	0.406	825.62	2.524
8	0.1279	478.14	1.624	8	0.4423	830.65	2.543
9	0.195	483.14	2.436	9	0.4792	835.62	2.580
10	0.294	488.14	3.587	10	0.5163	840.65	2.593
11	0.4339	493.14	5.083	11	0.5344	843.13	2.587
12	0.6184	498.14	6.744	12	0.5889	850.64	2.556
13	0.7221	500.64	7.456	13	0.6413	858.14	2.487
14	0.8248	503.14	7.798	14	0.7239	870.65	2.331
15	0.9123	505.64	7.509	15	0.7997	883.15	2.125
16	0.971	508.14	6.474	16	0.8626	895.65	1.756
17	0.9948	510.64	4.975	17	0.9097	908.15	1.374
				18	0.9479	920.65	1.113
				19	0.9771	933.14	0.849
				20	0.9952	945.64	0.531

Table 3 The common forms of $f(\alpha)$ and $g(\alpha)$

and the Coats-Redfern [3] method to study the complex. kinetics of the first and third decomposition process For the first stage of decomposition of the complex. of the complex, it can be suggested that the function of the possible

lows: data in Table 4. The decomposition reaction was

$$
\ln[(d\alpha/dt)/f(\alpha)] = \ln A - E/RT,
$$
 (1)

$$
\ln[g(\alpha)/T^2] = \ln AR/\beta E - E/RT,
$$
 (2) 1S.

where α is the fractional decomposition, T is the absolute temperature, A is the pre-exponential factor, R is the gas constant in kJ mol⁻¹°C⁻¹, E is the apparent activation energy (kJ mol⁻¹), β is the heating Table 5 shows that the values of E and A obtained
rate in ${}^{\circ}C$ min⁻¹ ${}^{\circ}C$ and $q(\alpha)$ are the differential and by the two methods are almost the same a rate in ${}^{\circ}$ C min⁻¹, $f(\alpha)$ and $g(\alpha)$ are the differential and

from the TG and DTG curves (listed in Table 2). With the third stage conformed to the use of the common forms of $f(\alpha)$ and $g(\alpha)$ in Table 3 equation. The kinetic equation is: use of the common forms of $f(\alpha)$ and $g(\alpha)$, in Table 3, the kinetic analysis were completed with the linear least squares method and the results are showed in Tables 4 and 5. When the values of E and A obtained Via the mathematical expression for the kinetic with the two methods are approximately the same and compensation effect, $\ln A = aE + b$ [4], where $\ln A$

3.2. Kinetic studies of non-isothermal decomposition the linear correlation coefficient is better, it can be concluded that the relevant function is the function of In the present paper, we use the Achar [2] method the probable thermal decomposition mechanism of the

The integral and differential equations are as fol- mechanism is function No. 5 in Table 3 based on the governed by three-dimensional diffusion (the Anti- $\lim_{[d\alpha/ dI)/f(\alpha)}$ = lnA - E/KI , $\lim_{[d\alpha]}$ Jander equation). The kinetic equation of this process

$$
d\alpha/dt = A \exp(-E/RT) \frac{3}{2}(1+\alpha)^{2/3}
$$

$$
\frac{[(1+\alpha)^{1/3}-1]^{-1}}{}
$$

integral mechanism functions, respectively. σ of r is better when the function is function No. 7 in
The best appropriation of Table 3. It can be concluded that the decomposition in The basic parameters, α , Tand $d\alpha/dt$, were obtained Table 3. It can be concluded that the decomposition in
the third stage conformed to the Avrami–Erofeev

$$
d\alpha/dt = A \exp(-E/RT)(1-\alpha)
$$

Table 4 Kinetic parameter for the thermal decomposition data of $Eu(p-MBA)$ ₃ dipy: Stage 1

Function No.	Integral method			Differential method			
	E (kJ mol ⁻¹)	$ln A (s^{-1})$	r	E (kJ mol ⁻¹)	$\ln A$ (s ⁻¹)	r	
-1	262.808	62.454	0.995	265.716	65.853	0.993	
\overline{c}	279.500	66.201	0.995	299.826	74.087	0.998	
3	287.070	66.705	0.995	316.704	76.991	0.997	
4	303.250	70.993	0.993	347.472	85.030	0.990	
5	247.823	56.243	0.996	244.215	57.979	0.990	
6	364.785	87.256	0.973	439.774	109.147	0.956	
	161.550	38.832	0.985	222.650	57.213	0.961	
8	105.058	24.738	0.985	166.157	43.144	0.948	
9	76.811	17.593	0.984	137.911	36.025	0.936	
10	48.565	10.303	0.982	109.664	28.788	0.916	
11	34.442	6.543	0.980	95.541	25.084	0.900	
12	141.769	32.835	0.994	176.499	44.462	0.993	
13	147.661	34.012	0.992	191.883	48.076	0.984	
14	127.440	29.667	0.995	130.384	33.096	0.983	
15	59.756	12.878	0.995	62.664	16.372	0.942	
16	37.195	7.060	0.994	40.102	10.622	0.877	
17	25.914	4.027	0.993	28.822	7.663	0.796	
18	219.742	54.329	0.932	314.952	81.330	0.902	
19	38.223	8.458	0.661	268.801	68.579	0.929	

and E were obtained with integral and differential References methods (the data was listed in Tables 4 and 5). Computation with the linear least squares method [1] R.F. Wang, L.P. Jin, M.Z. Wang, S.H. Huang and X.T. Chen, on a computer yields the kinetic compensation para-

Material Chimica Sinica (in Chinese), 53 (1995) 39-45.

(2) B.N. Achar, Proc. Int. Clay Conf, Jerusalem, 1 (1966) 67. meters a and b. The mathematic expression for the $\begin{bmatrix} 2 \end{bmatrix}$ B.N. Achar, Proc. Int. Clay Conf, Jerusalem, 1 (1966) 68. kinetic compensation effect of the first stage is: $\ln A = 0.2412E - 1.3223$ and $r = 0.9993$. The mathematic expression of the third stage is: $\ln A =$ $0.1431E - 3.3022$ and $r = 0.9957$.

-
-
-
- [4] J. Zsako, J. Thermal. Anal., 9 (1976) 101.