

Thermochimica Acta 296 (1997) 129-134

thermochimica acta

Studies on the non-isothermal kinetics of thermal decomposition of the complex of europium *p*-methylbenzoate with 2,2'-dipyridine

Ping Mu^{a,*}, RuiFen Wang^b, Liang Zhao^c

^aExperimental Center, Hebei Teachers' University, Shijiazhuang, 050016, People's Republic of China ^bDepartment of Chemistry, Hebei Normal College, Shijiazhuang, 050091, People's Republic of China ^cDepartment of Computer Science, Hebei Teachers' University, Shijiazhuang, 050016, People's Republic of China

Received 10 February 1996; received in revised form 7 March 1996; accepted 10 December 1996

Abstract

Thermal decomposition of the complex of europium p-methylbenzoate with 2,2'-dipyridine and its kinetics were studied under the non-isothermal condition by TG and DTG techniques. The non-isothermal kinetic data were analyzed by means of the Achar method and the Coats-Redfern method. The possible reaction mechanisms were suggested by comparing the kinetic parameters. The kinetic equation for the first stage can be expressed as:

$$d\alpha/dt = A \exp(-E/RT) 3/2(1+\alpha)^{2/3} [(1+\alpha)^{1/3} - 1]^{-1}$$

while for the third stage, $d\alpha/dt = A \exp(-E/RT)(1-\alpha)$. Mathematic expressions were derived from the kinetic compensation effects. (C) 1997 Elsevier Science B.V.

Keywords: Eu(III) complex; Thermal decomposition; Non-isothermal kinetics

1. Introduction

The special structure and the interesting luminescent character of the Eu(III) complex made it very important in applied researches as well as in theoretical studies.

Based on the preparation and the determination of the crystal structure and luminescence spectra of the complex [1], we have studied the non-isothermal kinetic data by means of the Achar method and the Coats-Redfern method and have suggested the possible reaction mechanism.

2. Experimental

2.1. Sample

The complex of europium p-methylbenzoate with 2,2'-dipyridine was prepared as described previously [1].

2.2. Apparatus

Decomposition experiments of $Eu(p-MBA)_3$ dipy (*p*-MBA: *p*-methylbenzoate and dipy: 2,2'-dipyridine) were carried out using a Perkin–Elmer TGA7 thermogravimetric analyzer under a nitrogen atmosphere, at a

^{*}Corresponding author.

^{0040-6031/97/\$17.00 © 1997} Elsevier Science B.V. All rights reserved *P11* \$0040-6031(97)00014-2

flow rate of 40 ml min⁻¹. The heating rate used was 10° C min⁻¹ from ambient to 840°C and sample sizes were 3 ± 0.1 mg.

3. Results and discussion

3.1. Thermal decomposition

The TG and DTG curves of $Eu(p-MBA)_3$ dipy are shown in Fig. 1. The thermoanalytical data for the complex are given in Table 1.

The Eu(III) complex decomposed via intermediates to give the europium oxide as an end product. The percentage of mass loss and probable compositions of the expelled groups are also listed in Table 1. The results of thermal analysis indicate that the complex undergoes a three-stage decomposition process. The TG-DTG curves show degradation in the first stage at in the 168-243°C temperature range and a dipy was considered to be expelled with a mass loss of 21.92% (theoretical loss is 21.89%). The degradation can also be demonstrated by the bond distances of the structure of the complex (Fig. 2). Eu-N distance is longer than any other bond distance; theoretically speaking, this bond is less stable and easy broken down. The second-stage degradation temperature is in the range 243-487°C with the mass loss of 19.10%, which is nearly equal to the theoretical loss of 18.94% which is the value of removal of one ion of p-MBA. Actually, this stage decomposition includes two steps in which the first step is in the range 243-457°C and second step is in the range 457-487°C with two intermediates of Eu₂(CH₃C₆H₄COO)₄O₂ and $[Eu_2(CH_3C_6H_4COO)_4]^{2+}$, obtained separately. This

Fig. 1. Thermogravimetric curves (DTG and TG) for Eu(p-MBA)₃ dipy.

Table 1 Thermal decomposition data	a for Eu(p-MBA) ₃ dipy [Eu ₂ (CH ₃ C ₆]	$H_4COO_{6}(C_{10}H_8N_2)_2$] from TG and DT	G analyses
Decomposition	Loss of mass (wt%)	Probable composition	Intermediate
Temperature range $(^{\circ}C)$		of expelled group	

Temperature range (°C)			of expelled group	memediate	
·····	TG	Theory			
168-243	21.92	21.89	$-2C_{10}H_8N_2$	Eu ₂ (CH ₃ C ₆ H ₄ COO) ₆	
243-457	16.20	16.70	$-2C_8H_7O$	Eu ₂ (CH ₃ C ₆ H ₄ COO) ₄ O ₂	
457-487	2.90	2.24	O ₂	$[Eu_2(CH_3C_6H_4COO)_4]^{2+}$	
487680	34.54	34.51	$-C_{32}H_{28}O_5$	Eu_2O_3	

Fig. 2. Structure and partial data of bond distances of Eu(p-MBA)₃ dipy [1].

degradation process can also be explained by structural data. From Fig. 2,

	distance ($\times 10^{-1}$ nm)
$^{1}Eu-O(1)$	2.385
Eu–O(2)	2.315
Eu-O(3)	2.439
Eu–O(4)	2.500
Eu-O(5)	2.446
Eu–O(6)	2.330
Eu-N(1)	2.655
Eu-N(2)	2.618

¹Eu'-O and Eu'-N bond is the same as Eu-O and Eu-N bond.

O(3) - C(21)	1.301
O(4)–C(21)	1.24

we can see that the distance of Eu-O(4) is the longest among all Eu-O bonds. Also, O(3) and O(4) are connected with C(21), the bond distance O(3)-C(21) = 1.301 > O(4) - C(21) = 1.24. Thus, Eu-O(4) and O(3)-C(21) bonds were considered to be broken down following the Eu-N bond, as indicated by the broken line in Fig. 2. The intermediate. $Eu_2(CH_3C_6H_4COO)_4O_2$, was produced with a mass loss of 16.2% (theoretical loss 16.7%). But there is no clear plateau in the TG curve, it continues to lose weight. TG curve indicates that with the rise of temperature, Eu₂(CH₃C₆H₄COO)₄O₂ continues to

degrade – remove O_2 and turn into $[Eu_2(CH_3C_6H_4COO)_4]^{2+}$. This degradation was followed by the third stage of decomposition in the 487–680°C temperature range, in which the other two ions of *p*-MBA were removed with a mass loss of 34.54% (theoretical loss is 34.51%). Up to now, the Eu(III) complex were completely degraded into Eu₂O₃, with a total loss of 75.56% (theoretical loss is 75.34%).

Table 2 Basic data for Eu(p-MBA)₃ dipy determined by TG and DTG

In base of above inference, the thermal decomposition process of Eu(III) complex may be expressed by the following scheme:

$$\begin{split} & \operatorname{Eu}_2(\operatorname{CH}_3\operatorname{C}_6\operatorname{H}_4\operatorname{COO})_6(\operatorname{C}_{10}\operatorname{H}_8\operatorname{N}_2)_2 \\ & \to \operatorname{Eu}_2(\operatorname{CH}_3\operatorname{C}_6\operatorname{H}_4\operatorname{COO})_6 \\ & \to \operatorname{Eu}_2(\operatorname{CH}_3\operatorname{C}_6\operatorname{H}_4\operatorname{COO})_4\operatorname{O}_2 \\ & \to \left[\operatorname{Eu}_2(\operatorname{CH}_3\operatorname{C}_6\operatorname{H}_4\operatorname{COO})_4\right]^{2+} \to \operatorname{Eu}_2\operatorname{O}_3 \end{split}$$

Stage 1			Stage 3				
 No.	α	T per K	$d\alpha/dT$	No.	α	<i>Т</i> рег К	$d\alpha/dT$
1	0.013	443.14	0.099	1	0.0487	770.65	1.124
2	0.0153	448.14	0.124	2	0.1074	783.12	1.685
3	0.0194	453.14	0.187	3	0.1877	795.64	2.231
4	0.0262	458.14	0.287	4	0.2792	808.15	2.512
5	0.0374	463.14	0.449	5	0.3157	813.12	2.549
6	0.0554	468.14	0.699	6	0.3521	818,14	2.512
7	0.0839	473.14	1.061	7	0.406	825.62	2.524
8	0.1279	478,14	1.624	8	0.4423	830.65	2.543
9	0.195	483.14	2.436	9	0.4792	835.62	2.580
10	0.294	488.14	3.587	10	0.5163	840.65	2.593
11	0.4339	493.14	5.083	11	0.5344	843.13	2.587
12	0.6184	498.14	6.744	12	0.5889	850.64	2.556
13	0.7221	500.64	7.456	13	0.6413	858.14	2.487
14	0.8248	503.14	7.798	14	0.7239	870.65	2.331
15	0.9123	505.64	7.509	15	0.7997	883.15	2.125
16	0.971	508.14	6.474	16	0.8626	895.65	1.756
17	0.9948	510.64	4.975	17	0.9097	908.15	1.374
				18	0.9479	920.65	1.113
				19	0.9771	933.14	0.849
				20	0.9952	945.64	0.531

Table 3 The common forms of $f(\alpha)$ and $g(\alpha)$

Function No.	g(α)	$f(\alpha)$
1	α^2	1/(2α)
2	$\alpha + (1-\alpha) \ln(1-\alpha)$	$-[\ln(1-\alpha)]^{-1}$
3	$(1-2\alpha/3)-(1-\alpha)^{2/3}$	$3/2[(1-\alpha)^{-1/3}-1]^{-1}$
4	$[1-(1-\alpha)^{1/3}]^2$	$3/2(1-\alpha)^{2/3}[1-(1-\alpha)^{1/3}]^{-1}$
5	$[(1+\alpha)^{1/3}-1]^2$	$3/2(1+\alpha)^{2/3}[(1+\alpha)^{1/3}-1]^{-1}$
6	$[1/(1-\alpha)^{1/3}-1]^2$	$3/2(1-\alpha)^{4/3}[1/(1-\alpha)^{1/3}-1]^{-1}$
7	$-\ln(1-\alpha)$	$(1-\alpha)$
8-11	$[-\ln(1-\alpha)]^n$ (n = 2/3, 1/2, 1/3 and 1/4)	$1/n(1-\alpha)[-\ln(1-\alpha)]^{-(n-1)}$
12-13	$1 - (1 - \alpha)^n$ (n = 1/2 and 1/3)	$1/n(1-\alpha)^{-(n-1)}$
14-17	α^n (n = 1, 1/2, 1/3 and 1/4)	$1/n\alpha^{-(n-1)}$
18	$(1-\alpha)^{-1}-1$	$(1-\alpha)^2$
19	$(1-\alpha)^{-1/2}$	$2(1-\alpha)^{3/2}$

3.2. Kinetic studies of non-isothermal decomposition

In the present paper, we use the Achar [2] method and the Coats-Redfern [3] method to study the kinetics of the first and third decomposition process of the complex.

The integral and differential equations are as follows:

$$\ln[(\mathrm{d}\alpha/\mathrm{d}t)/f(\alpha)] = \ln A - E/RT, \qquad (1)$$

$$\ln[g(\alpha)/T^2] = \ln AR/\beta E - E/RT,$$
(2)

where α is the fractional decomposition, *T* is the absolute temperature, *A* is the pre-exponential factor, *R* is the gas constant in kJ mol^{-1°}C⁻¹, *E* is the apparent activation energy (kJ mol⁻¹), β is the heating rate in °C min⁻¹, $f(\alpha)$ and $g(\alpha)$ are the differential and integral mechanism functions, respectively.

The basic parameters, α , T and $d\alpha/dt$, were obtained from the TG and DTG curves (listed in Table 2). With use of the common forms of $f(\alpha)$ and $g(\alpha)$, in Table 3, the kinetic analysis were completed with the linear least squares method and the results are showed in Tables 4 and 5. When the values of E and A obtained with the two methods are approximately the same and the linear correlation coefficient is better, it can be concluded that the relevant function is the function of the probable thermal decomposition mechanism of the complex.

For the first stage of decomposition of the complex, it can be suggested that the function of the possible mechanism is function No. 5 in Table 3 based on the data in Table 4. The decomposition reaction was governed by three-dimensional diffusion (the Anti-Jander equation). The kinetic equation of this process is:

$$d\alpha/dt = A \exp(-E/RT) 3/2(1+\alpha)^{2/3}$$
$$\cdot [(1+\alpha)^{1/3} - 1]^{-1}.$$

Table 5 shows that the values of E and A obtained by the two methods are almost the same and the value of r is better when the function is function No. 7 in Table 3. It can be concluded that the decomposition in the third stage conformed to the Avrami-Erofeev equation. The kinetic equation is:

$$d\alpha/dt = A \exp(-E/RT)(1-\alpha)$$

Via the mathematical expression for the kinetic compensation effect, $\ln A = aE+b$ [4], where $\ln A$

Table 4 Kinetic parameter for the thermal decomposition data of $Eu(p-MBA)_3$ dipy: Stage 1

Function No.	Integral method			Differential meth	od	
	E (kJ mol ⁻¹)	$\ln A \ (s^{-1})$	r	$\overline{E \text{ (kJ mol}^{-1})}$	$\ln A \ (s^{-1})$	r
1	262.808	62.454	0.995	265.716	65.853	0.993
2	279.500	66.201	0.995	299.826	74.087	0.998
3	287.070	66.705	0.995	316.704	76.991	0.997
4	303.250	70.993	0.993	347.472	85.030	0.990
5	247.823	56.243	0.996	244.215	57.979	0.990
6	364.785	87.256	0.973	439.774	109.147	0.956
7	161.550	38.832	0.985	222.650	57.213	0.961
8	105.058	24.738	0.985	166.157	43.144	0.948
9	76.811	17.593	0.984	137.911	36.025	0.936
10	48.565	10.303	0.982	109.664	28.788	0.916
11	34.442	6.543	0.980	95.541	25.084	0.900
12	141.769	32.835	0.994	176.499	44.462	0.993
13	147.661	34.012	0.992	191.883	48.076	0.984
14	127.440	29.667	0.995	130.384	33.096	0.983
15	59.756	12.878	0.995	62.664	16.372	0.942
16	37.195	7.060	0.994	40.102	10.622	0.877
17	25.914	4.027	0.993	28.822	7.663	0.796
18	219.742	54.329	0.932	314.952	81.330	0.902
19	38.223	8.458	0.661	268.801	68.579	0.929

Table 5	
Kinetic parameter for the thermal decomposition data of Eu(p-MBA) ₃ dipy: Stage 3	

Function No.	Integral method			Differential method			
	E (kJ mol ⁻¹)	$\ln A \ (s^{-1})$	r	$\overline{E \text{ (kJ mol}^{-1})}$	$\ln A \ (\mathrm{s}^{-1})$	r	
1	159.861	19.731	0.892	57.338	8.648	0.555	
2	183.889	22.863	0.922	110.417	15.996	0.845	
3	195.692	23.209	0.936	138.513	18.706	0.920	
4	221.133	27.179	0.958	189.051	26.302	0.973	
5	142.762	14.699	0.875	33.111	2.585	0.372	
6	322.21	42.746	0.990	340.666	49.088	0.980	
7	125.905	16.000	0.978	121.919	19.207	0.960	
8	79.201	9.011	0.975	75.215	12.276	0.899	
9	55.849	5.399	0.971	51.862	8.726	0.806	
10	32.496	1.595	0.962	28.510	5.058	0.581	
11	20.820	-0.482	0.948	16.834	3.139	0.380	
12	94.230	10.38	0.934	46.111	7.120	0.923	
13	103.462	11.323	0.951	71.381	10.513	0.966	
14	72.826	7.411	0.873	-29.696	-3.580	0.537	
15	29.309	0.733	0.819	-73.213	-10.040	0.934	
16	14.804	-1.872	0.730	-87.719	-12.368	0.969	
17	7.551	-3.507	0.584	-94.972	-13.617	0.978	
18	224.442	31.322	0.977	273.534	41.993	0.933	
19	61.600	7.102	0.861	197.727	29.907	0.943	

and *E* were obtained with integral and differential methods (the data was listed in Tables 4 and 5). Computation with the linear least squares method on a computer yields the kinetic compensation parameters *a* and *b*. The mathematic expression for the kinetic compensation effect of the first stage is: $\ln A = 0.2412E - 1.3223$ and r = 0.9993. The mathematic expression of the third stage is: $\ln A = 0.1431E - 3.3022$ and r = 0.9957.

References

- R.F. Wang, L.P. Jin, M.Z. Wang, S.H. Huang and X.T. Chen, Acta Chimica Sinica (in Chinese), 53 (1995) 39–45.
- [2] B.N. Achar, Proc. Int. Clay Conf, Jerusalem, 1 (1966) 67.
- [3] A.W. Coats and J.D. Redfern, Nature, 201 (1964) 68.
- [4] J. Zsako, J. Thermal. Anal., 9 (1976) 101.